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The problem of controlling a class of nonlinear mnltibody flexible space systems is considered. The system

configuration consists of a flexible central body to which a number of flexible articulated appendages are attached,

resulting in highly nonlinear dynamics. Assuming collocated actuators and sensors, global asymptotic stability of

such systems is established using a nonlinear passivity-bnsed control law. In addition, a special case where the

central-body motion is small while the appendages can undergo unlimited motion, it is shown that the system,

although highly nonlinear, can be stabilized by linear static and dynamic dissipative control laws. Furthermore,

the static dissipative control law preserves stability despite actuator and sensor nonlinearities of certain types. In

all cases, the stability does not depend on the knowledge of the model and hence is robust to modeling errors and

uncertainties. The results are applicable to a broad dass of systems, such as flexible multilink manipulators and

multipayload space platforms. The stability proofs use the Lyapunov approach and exploit the inherent passivity

of such systems.

I. Introduction

LEXIBLE multibody space systems such as space platforms

with multiple articulated payloads and space-based manipula-

tors used for satellite assembly and servicing are characterized by

significant flexibility in the structural members as well as joints.

Examples of such systems include Earth-observing systems and

Shuttle-based remote manipulator systems. Control systems de-

sign for such systems is a difficult problem because of the highly
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Fig. 1 Multibody system.

nonlinear dynamics, significant elastic motion with low inherent

damping, and uncertainties in the mathematical model. The pub-
lished literature contains a number of important stability results for

certain subclasses of this problem, e.g., linear flexible structures,

nonlinear multibody rigid structures, and recently, multibody flexi-
ble structures. Under certain conditions, the input--output maps for

such systems can be shown to be "passive. ''t The Lyapunov and pas-
sivity approaches are used in Ref. 2 to demonstrate global asymp-
totic stability of linear flexible space structures (with no articulated
appendages) for a class of dissipative compensators. The stability
properties were shown to be robust to first-order actuator dynamics
and certain actuator/sensor nonlinearities. Multibody rigid struc-

tures comprise another class of systems for which stability results
have been advanced. Global asymptotic stability of terrestrial rigid

manipulators has been established 3 employing proportional-plus-
derivative control with gravity compensation, and the Lyapunov
stability of nonlinear multilink flexible systems was addressed in
Ref. 4. However, the global asymptotic stability of nonlinear, multi-

link, flexible space structures has not been addressed in the literature.
We consider a nonlinear rotational dynamic model of a multibody

flexible spacecraft assumed to have a branched geometry; i.e., it has
a central flexible body to which various flexible appendage bodies
are attached (Fig. 1). A nonlinear mathematical model of a generic
flexible multibody system is given in Sec. II. It is shown (Lemma A2

in the Appendix) that the system has the property of passivity that is

pivotal to the proofs. Basic kinematic relations of the quateruion (a
measure of attitude of the central body) are also given. Section IH

establishes the global asymptotic stability of the complete nonlinear

system under a nonlinear control law based on quatemion feedback.

A special case where the central-body attitude motion is small is
addressed in Sec. IV. A numerical example is given in Sec. V. The
control laws of Sees. III, IV.A, and IV.B were considered in Ref. 5

but are included here for completeness.

II. Mathematical Model

The class of systems considered consists of a branched configu-
ration of flexible bodies as shown in Fig. I. Each branch by itself

could be a serial multibody structure. For the sake of simplicity and

without loss of generality, we shall consider a spa_ft with only

one such branch where each appendage body has one degree of free-

dom (hinge) with respect to the previous body in chain. However,
the results obtained in this paper will also be applicable to the gen-

eral case with multiple branches. Consider the spacecraft consisting
of a central flexible body and a chain of (k - 3) flexible links. The

central body has three rigid rotational degr_s of freedom, and each

link is connected by one rotational degree of freedom to the neigh-
boring link. The Lagrangian for the system under consideration can
be shown 5 to have the following form:

L = ½[#rM(p)p -qr_(q] (1)

where /_ = {tot 0r qr}r; to is the 3 x 1 inertial angular velo-

city vector (in body-fixed coordinates) for the central body; 0 =
(01, 02 ..... 0<k_3))r, where Oi denotes the joint angle for the ith joint
expressed in body-fixed coordinates; q is an (n -k) vector of flexible

degrees of freedom (modal amplitudes); M (p) = M r (p) > 0 is the

configuration-dependent mass-inertia matrix; and K is the symmet-
ric positive-definite stiffness matrix related to the flexible degrees

of freedom. Using the Lagrangian (1), the following equations of

motion are obtained (the details of the derivation of the mathematical
model can he found in Ref. 5):

M(p)# + C(p, p)p + Dp + Kp = Br u (2)

where {p} = {yr, Or, qr}r and # = to. Here, C(p, p) corresponds

to Coriolis and centrifugal forces; D is the symmetric, positive-

semidefinite damping matrix; B = [l*,,k 0kxtn-k)] is the control
influence matrix; and u is the k-vector of applied torques. The first

three components of u represent the attitude control torques (about

the x, y, z axes) applied to the central body, whereas the remaining
components are the torques applied at the (k- 3) joints. The terms K

and D are symmetric, positive-semidefinite stiffness and damping
matrices:

V Okxk Otx(n-k) ]=F 0,xk 0_x(n-k) ] D=K
L 0(n-k) xt K(n-t)x[n-k) A' L 0(n-i) xk D(n-t)x(n-t) ..I

(3)

where/_ and/) are symmetric positive definite. The angular mea-

surements for the central body are the three Euler angles (not the

vector _,), whereas remaining angular measurements consist of the

relative angles between adjoining bodies. The angular rate measur-
ements are given by Yr = (tot, 0r)r = B/L One important inherent

property of such sy.stems that is crucial to the stability results is that
the matrix ((l/2)M - C) is skew symmetric. An outline of the proof

of this properly is given as Lemma A1 in the Appendix. (See Ref. 6

for a detailed proof.) Using this property, it is also shown in the

Appendix (Lemma A2) that the input-output map from u to Yr is

passive. Because of this passivity property, the system can be stabi-
lized (in the input-output sense) by any strictly passive controller. I

The simplest example of such a controller is constant (positive)

gain rate feedback. However, the system would be stable only in the
input-output sense and would not be asymptotically stable. In par-

ticular, the steady-state velocities will be zero, but the steady-state
values of the central-body attitude and appendage angles can be ar-

bitrary. In other words, the system would be only Lyaptmov stable.

Therefore, we shall develop control laws that utilize both position

and rate measurements and yield asymptotic stability.
The central-body attitude (Euler angle) vector r/ is given by

E(rl)//= to, where E(r/) is a 3 x 3 transformation matrix. The sen-

sor outputs consist of three central-body Fader angles, the (k - 3)
joint angles, and the angular rates, i.e., the sensors are collocated
with the torque actuators. The sensor outputs are then given by

yp = B/3, y, = B p (4)

where/3 = (r/r , 0 r, qr)r wherein r/is the Euler angle vector for the

central body. Here, yp = (r/r 0r)r and y, = (o_r, 0r)r are mea-

sured angular position and rate vectors, respectively. It is assumed

that the body rate measurements to are available via rate gyroscopes.
The orientation of a free-floating body can be minimally rep-

resented by a three-dimensional orientation vector. However, this

representation is not unique. One minimal representation that is
commonly used to represent the attitude is Euler angles. As stated
previously, the 3 x 1 Ealer angle vector 17is given by E(r/)//= to,

where E07) is a 3 x 3 transformation matrix. The problem with
using this representation is that E(0) becomes singular for certain

values of 17.The problem of singularity in three-parameter repre-
sentation of attitude has been studied in detail in the literature. An

effective way of overcoming the singularity problem is to use the
quaternion formulation. 7

The unit quaternion (also known as Euler parameter vector) _ is
defined as follows:

a={t_r, ct4} r, &= a2 sin i , a+=cos -_

&3

Here, & = (&l, &2, _3) r is the unit vector along the eigenaxis of



1046 KELKAR.JOSHLANDALBERTS

rotation and _b is the magnitude of rotation. The quatemion is also

subjected to the norm constraint

t_r_ + ot_ = 1 (6)

The quaternion obeys the following kinematic differential

equations:

O/ = {(W X I_ "_- 0_40) ) t_ 4 = --2I-O)T_ (7)

We shall use the quatemion representation for the central-body

attitude. Euler angle measurements can be used to compute the

quatemions. 7

The open-loop system given by E,qs. (2), (7), and (8) has multi-
ple equilibrium solutions: -r r r(ass, ot4,_, 0_,) , where the subscript ss

denotes the steady-state value (the steady-state value of q is zero).

Defining fl = (t_4 -- 1) and denoting/_ = z, Eqs. (2), (7), and (8)
can be rewritten as

M_ + Cz + Dz + Kq = Bru (8)

(9)

(10)

(11)

& = ½[o_ x a + (5 + 1)o4

In Eq. (8) the matrices M and C are functions of p and (p, b), respec-
tively. It should be noted that the first three elements of p associated
with the orientation of the central body can be fully described by the

unit quaternion. Hence, M and C are implicit functions of or, and

therefore, the system represented by Eqs. (8-11) is time invariant

and can be expressed in the state-space form as

i: = f(x, u), yp = B/5, y, = Bp 02)

where x = (&r,/5, 0 r, qr, zr )r and/5 = (&r, Or )r. Note that the

dimension ofx is (2n + 1), which is one more than the dimension

of the system in Eq. (2). However, one constraint [Eq. (6)] is now

present. It can be easily verified from Eq. (7) that the constraint (6)
is satisfied for all t > 0 if it is satisfied at t = 0.

ill. Nonlinear Dissipative Control Law

Consider the dissipative control taw u given by

u = -Gp_p - G,yr (13)

where matrices Gp and G, are symmetric positive-definite k x k

matrices and Gp is given by

Gp ---- 1 + T:_t,l 03x(k-3) (14)

0(k-3) x3 G02(k-3)x(k-3) J

Note that Eqs. (13) and (14) represent a nonlinear control law. If Gp

and G, satisfy certain conditions, this control law can be shown to
render the time rate of change of the system's energy negative along

all trajectories; i.e., it is a dissipative control law.
The closed-loop equilibrium solution can be obtained by equating

all the derivatives to zero in Eqs. (2), (10), and (11). In particular,
=/5 =0 _ _= 0,0 =o,,t = 0, and

Otxl
L 0(.-k)x{.-k)

Since I/5 + II < 1 [because of Eq. (6)], Gp is positive definite, and
Eq. (15) implies/5 = (&r or)r = 0 and q = 0. The equilibrium

solution of Eq. (11) is/_ =/5_, (constant), i.e., _4 = constant, which

implies [from Eq. (6)] that a4 = -4-1. Thus there appear to be
two closed-loop equilibrium points corresponding to or4 = 1 and

a4 = - 1 (all other state variables being zero). However, from Eq. (5),
_4 = 1 =_ _ = 0 and a4 = - 1 =¢, _ = 2rr, i.e., there is only one

equilibrium point in the physical space.

One of the control objectives is to transfer the state of the system
from one orientation (equilibrium) position to another orientation.

Without loss of generality, the target orientation can be defined to
be zero, and the initial orientation, given by (&(0), a4 (0), 0(0)), can

always be defined in such a way that I_(0)1 _< 7r, 0 _< _4(0) _< 1

(corresponding to 1¢1 _< rt), and (&(0), a4(0)) satisfy Eq. (6).

The following theorem establishes the global asymptotic stability
of the physical equilibrium state of the system.

Theorem 1. Suppose Gp2(,_-3)×(*-3) and Gr(kxk) are symmetric

and positive definite and Gpj = tz/3, where/.t > 0. Then, the closed-
loop system given by Eqs. (12) and (13) is globally asymptotically

stable (GAS).

Proof. Consider the candidate Lyapunov function

1 T
V = ½pr M(p)p + ½qr _(q + ]O Gp20

I-T
+ _a (Gpt + 2_13)ti +/52_ (16)

Here, V is clearly positive definite and radially unbounded with
respect to a state vector {ti r,/5, 0 r, qr,/_r]r since M(p), K, Gpt,

and Gp2 are positive-definite symmetric matrices. Note that the ma-
trix M(p), although configuration dependent, is uniformly bounded

from below and above by the values that correspond to the mini-

mum and maximum inertia configurations, respectively (i.e., there
exist positive-definite matrices M and M such that M < M < M).

Taking the time derivative of V, we have

(; = pr Mi5 + ½Pr l(4p + ilr Kq + br Gp20

+ 6tr (Gp_ + 2_13)t_ + 2/sfl/z (17)

Using F_,qs.(2), (10), (1 1), and (14), we get

= prs% + i: (½M- c)i, - proi, - i,r rp +

+OrGp20 + ½(f2_)rG_l& + ½(/5 + 1)wrGplt_ +//.wT_

(18)

where fl = (to ×) denotes the skew-symmetric cross product matrix,
i.e., w x x = f2x. Substituting for u and noting that /_r Kp =

qr/_q, (fl&)rG_lt _ = 0, and using Lemma A1, we obtain

+ ½(fl + l)torGrl_t + i.tto r& + OrGy20 (t9)

Note that (Bp)rG_ = (1/2)(/5 + l)o_rG,l& + p.w r& +OrGr20.

After cancellations, we get

V = -pr(O + SrG,n)l, (20)

Since D + BrG, B is a positive-defim.'te symmetric matrix, ¢ 5 0,
i.e., f' is negative semidefinite, and V = 0 =_ /_ = 0 _ /5 = 0.

Substituting in the closed-loop equation we get Eq. (15). As shown

previously, Eq. (15) =_ /5 = 0, q = 0, i.e., ti = 0, 0 = 0, and
t_4 = 4-1 (or/5 = 0, -2). Consistent with the previous discussion,

these values correspond to two equilibrium points representing the

same physical equilibrium state.

It can be easily verified, from Eq. (16), that any small perturbation
in a_ from the equilibrium point corresponding to a_ = - 1 will

cause a decrease in the value of V(¢ has to be greater than 0 because

I_I -< 1). Thus, in the mathematical sense., a4 = -1 corresponds
to an isolated equilibrium point such that V = 0 at that point and

V < 0 in a neighborhood of that point, i.e., o_ = -1 is a "repeller,"
not an "attractor." It has been already shown that f' is negative

along all trajectories in the state space except at the two equilib-

rium points. That is, if the system's initial condition lies anywhere

in the state space except at the equilibrium point corresponding to

_t4 = - 1, then the system will asymptotically approach the origin,
i.e., x = 0; and if the system is at the equilibrium point correspond-

ing to t_4 = - 1 at t = 0, then it will stay there for all t > 0. How-

ever, this is the same equilibrium point in the physical space; hence
it can be concluded by LaSalle's invariance theorem that the system
is GAS. []
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IV. Systems in Attitude Hold Configuration

Consider an important special case where the central-body atti-
tude motion is small. This can occur in many realistic situations.

For example, in the case of a space-station-based or Shuttle-based

manipulator, the inertia of the base (central body) is much larger

than that of any manipulator link or payload. In such cases the rota-
tional motion of the base can be assumed to be in the linear region,

although the payloads (or links) attached to it can undergo large rota-
tional and translational motions and nonlinear dynamic loading due

to Coriolis and centripetal accelerations. That is, the system model

is still highly nonlinear. For this case, since the attitude motion of the

central body is small, the singularity problem discussed in Sec. II
does not arise, and the quatemion formulation is not necessary. As

a result, y approximately equals the Euler angle vector r/and can

be used to represent the central-body attitude. Here, y is given by

= w. The equations of motion (2) can now be expressed in the

state-space form simply as

I ° ' 1x= _M_l(p) K _M_l(p)(C(p , p) + D) £

[o]+ M_l(p)Br u (21)

where _ = Ip r, pr }r p = lyr Or, qr }r. Note that Eq. (21) still

represents a highly nonlinear dynamic system. However, it is shown
next that it can be stabilized by linear dissipative controllers.

A. Stability with Static Dissipative Controllers
The static dissipative control law u is given by

u = -Gpyp - Gryr (22)

where (_1, is a symmetric positive-definite k x k matrix

yp = Bp = (_,r, 0r)r, Yr = B/_ (23)

where yp and Yr are measured angular position and rate vectors.

Theorem 2. Suppose (;p.k×* and G,.,xk are symmetric and pos-
itive definite. Then, the closed-loop system given by Eqs. (21-23)
is GAS.

Proof. Consider the candidate Lyapunov function

V = ½prM(p)p + Ipr(K -t- BrGeB)p (24)

Here, V is clearly positive definite since M(p) and K + BrGpB

are positive-definite symmetric matrices. Taking the time derivative,
letting K = (K + Br GpB), and simplifying, we get

_' = pr(½M-C)p-pr Kp+pr Kp-pr(D+BrG_B)p (25)

Again, using Lemma A 1, we get, _br ((1/2)M - C)/_ = 0, and after
some cancellations, we obtain

_" = -pr (D + BT G, B)p (26)

Since D + Br G_ B is the positive-definite symmetric matrix, _' < 0,

i.e., 17 is negative semidefinite in p and ,b and V = 0 =_ ,b = 0 =_
/_ = 0. Substituting for u from Eq. (22) into Eq. (2), we get the
closed-loop steady-state equation

(K + BrGt, B)p = 0 =_ p = 0 (27)

Thus, f' is not zero along any trajectories; then, by LaSalle's theo-

rem, the system is GAS. []

The significance of the two results presented in Theorems 1 and 2

is that nonlinear muitibody systems belonging to these classes can
be stabilized with the dissipative control laws given. The control

laws do not require any knowledge of the system parameters or

model order and depend only on the inherent input-output property

of the system, namely passivity, which is a result of actuator/sensor
collocation. Therefore, the control laws given are robust to modeling

errors and parametric uncertainties. In the case of manipulators, this

means that one can accomplish any terminal angular position from
any initial position with guaranteed asymptotic stability.

B. Robustness to Actuator/Sensor Nonlinearities

Theorem 2 proves global asymptotic stability for systems in the
central-body attitude-hold configuration. It assumes linear actuators

and sensors. In practice, however, the actuators and sensors have
nonlinearities. The following theorem extends the results of Ref. 2 to
the case of nonlinear flexible multibody systems. That is, the robust

stability property of the dissipative controller is proved to hold in

the presence of a wide class of actuator/sensor noniinearities (such
as saturation) as defined below.

Definition. A function lp(u) is said to belong to the (0, o_)

sector if _(0) = 0 and v_/(v) > 0 for v _ 0: if" is said to belong to

the I0, or) sector if v_(v) > 0.

Let _o_ (.), ff'p_(-), and _,_ (.) denote the nonlinearities in the ith

actuator,.position sensor, and rate sensor channels, respectively. As-

suming Gp and G, are diagonal with elements Gp_ and G_, respec-
tively, the actual input is given by

IAi = l_tai[--Gpi_pi(Ypi ) -- Gria_rri(Yri)] i = 1, 2..... k (28)

We assume that _pi, _ai, and _,i (i = 1,2 ..... k) are continu-

ous single-valued functions R --+ R. The following theorem gives
sufficient conditions for stability.

Theorem 3. Consider the closed-leop system given by Eqs. (21),

(23), and (28), where t_p and G_ are diagonal with positive entries.

Suppose _,-, _pi, and _Prl (i = 1,2 ..... k) are single-valued, time-
invariant continuous functions belonging to the (0, oo) sector and
_o_ are monotonically nondecreasing. Under these conditions, the

closed-loop system is GAS.
Proof (The proof closely follows Ref. 2.) Let tp = -yp.

Define

_/m (v) = - _pi (- v) (29)

ff_i (u) = - @,i (- v) (30)

If _pi. lp, i _ (0, vo) sector, then _pi, _ri also belong to the same
sector. Now, consider the following Lurt-Postnikov Lyapunov func-
tion:

v = lpr M(p)l_+lqr Kq + _ fo_ _[Gp_/p_(v)]dv (31)
i=1

where/( is the symmetric positive-definite part of K. Taking the

time derivative and using (2),

=/_r(Bru - Cp - Dp - gp) + lpr l(,lp

k

+ E ¢_g',,tt_,,_,,(tP,)l + t)r/fq (32)
i=1

Upon several cancellations and using Lemma A 1,

k k

I" = - E ui(°i - dlr Dil + E _bi_oi [Gp, _pl (_oi)l (33)
i=l i=l

where matrix/3 is the positive-definite part of D:

k

i=l

at- Gpi_rpi(_oi) ] - _tai[Gpi_tpi(tPi)] } (34)

Since the _ai are monotonically nondecreasing and _,i belong to
the (0, o_) sector, V < 0, and it can be concluded that the system

is at least Lyapunov stable. Now we will prove that in fact the

system is GAS. First, let us consider a special case when the _p_
are monotonically increasing. Then f' < _qr/_q, and f' = 0 only
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when q = 0 and _b = 0, which implies (yr 0r)r = 0 =_ # = 0

jb = 0. Substituting in the closed-loop equation,

Kp = Br_,[-Gp_p(yp)] (35)

=_ _',[-Gp_p(yp)] = 0 and q = 0

If the l_tpi belong to the (0, o¢) sector, lPai(v) = grin(v) = 0 only
when v = 0. Therefore, yp = 0, i.e., 0 = 0 and y = 0. Thus, V = 0
only at the origin, and the system is GAS.

In the case when actuator nonlinearities are of the monotonically

nondecreasing type (such as saturation nonlinearity), V can be 0
even if _b # 0. However, we will show that every system trajec-

tory along which _' --- 0 has to go to the origin asymptotically.
When _b # 0, I? = 0 only when all actuators are saturated. Then,
from the equations of motion, this implies that system trajectories
will become unbounded, which is not possible since we have al-

ready proved that the system is Lyapunov stable. Hence, I? cannot
be identically zero along the system trajectories and the system
is GAS. El

For the case considered in Sec. II, where the central-body motion

is not in the linear range, the robust stability results in the presence
of actuator/sensor nonlinearities cannot be easily extended since the

stabilizing control law (13) is nonlinear.
The next section extends the robust stability results of Sec. IV.A

to a class of more versatile controllers, namely, dynamic dissipative

controllers. The advantages of using dynamic dissipative controllers

include higher performance, more design freedom, and better noise
attenuation.

C. Stability with Dynamic Dissiimtive Controllers
In order to obtain better performance while still retaining guaran-

teed robustness to unmodeled dynamics and parameter uncertain-
ties, we consider a class of dynamic dissipative controllers (DDCs).

Such compensators were suggested in the past for controlling only
the elastic motion s'9 of linear flexible space structures with no ar-

ticulated appendages (i.e., single-body structures). The results were
extended in Ref. 10 to additionally include the rigid-body modes.

The results to be presented in this section essentially extend and
generalize the results of Ref. 10 to the nonlinear multibody case.
In particular, it is shown that nonlinear multibody space structures
in the attitude-hoLd configuration can be stabilized by linear DDCs.
The methods of proof are similar to those in Ref. 10, which addressed

only linear single-body spacecraft.

Mathematical Preliminaries

Definition. A rational matrix-valued function T (s) of the com-

plex variable s is said to be positive real if all of its elements are
analytic in Re[a] > 0, and T (jw) + T* (jw) > 0 for w ¢ (-oo, oo),
where the asterisk denotes the complex conjugate transpose.

Suppose (A, B, C, D) is an nth-order minimal realization of T (s).
From Ref. 11, a necessary and sufficient condition for T(s) to be

positive real is that there exists an n x n symmetric positive-definite
matrix P and matrices W and L such that

ArP+pA=-LL r, C=Brp+wrL, wrW=D+D r
(37)

This result is also generally known in the literature as the Kalman-
Yakubovich iemma. A stronger concept along these lines is strictly
positive-real (SPR) systems. However, there are several definitions
of SPR systems (see Ref. 12). The concept of weakly SPR 12appears
to be the least restrictive definition of SPR. Nevertheless, all the

definitions of SPR seem to require the system to have all poles

in the open left-half plane. Herein we define marginally strictly
positive-real 13 systems as follows:

Definition. A rational matrix-valued function T(s) of the com-

plex variable s is said to be marginally strictly positive real (MSPR)

if T (s) is positive real and T (jw) + T" (jw) > 0 for w _ (-oo, _).
The obvious difference between the above definition and the def-

inition of positive-real systems is that the > has been replaced by

Fig. 2 Feedback configuration.

strict inequality. The difference between the MSPR and weak SPR of
Ref. 12 is that the latter definition requires the system to have poles

in the open left-half plane, whereas the former definition allows

poles on the joJ axis. It was proved in Ref. 13 that a linear positive-

real system can be robustly stabilized by any MSPR control law. It

is proved next that the nonlinear multibody flexible system (21) can
also be robustly stabilized by an MSPR control law.

Stability Results
Consider the system given by Eq. (21) with the sensor outputs

given by Eq. (23). Suppose a controller/C(s), with k inputs and k

outputs, is represented by the minimal realization

Ycc = Acxc +Bcuc (38)

yc = C¢x_ + D_u_ (39)

where xc is the ncdimensional state vector and (A_, B_, C_, De) is
a minimal realization of K:(s).

Define

i_ = Yc (40)

xz=(xrc,vr) r (41)

Yz = v (42)

Equations (39--42) can be combined as

xz = Azxz + Bzuc (43)

where

Az = C_ ' D_ '

The closed-loop system is shown in Fig. 2. Here, K;(s) is said to

stabilize the nonlinear plant if the closed-loop system is GAS [with

/C(s) represented by its minimal realization].
Theorem 4. Consider the nonlinear plant (21) with yp as the

output. Suppose
1) A, is strictly Hurwitz.
2) There exists an (n_ + k) x (n_ + k) matrix Pz = P[ > 0 such

that

Ar pz + _Az = -az -- -diag(LrcLc, 0k) (46)

where L¢ is the k x nc matrix such that (Lc, Ac) is observable and

L,(s l - A_)-I B_ has no transmission zeros in Re[s] > O.

3) Assume

Cz = Br Pz (47)

4) K_(s) = CAM - A_)-JB_ + D_ has no transmission zeros at

the origin.
Then K_(s) stabilizes the nonlinear plant.

Proof. Let us first consider the system shown in Fig. 3a. The

nonlinear plant is given by Eq. (2), and its state vector is taken to be

(qr pr)r; i.e., (yr or)r is not included in the state vector. Now
consider the Lyapunov function

V = ½/_rM(p)/5 + ½qr[fq + ½xrp_xz (48)

where/(" is the symmetric positive-definite part of K (i.e., the part
associated with nonzero stiffness). Note that V is positive definite
in the state vector (qr,/_r)r since the mass-inertia matrix M(p),
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Fig. 3 Rearrangement of feedback loop.

as stated previously, is symmetric positive definite and uniformly
bounded from below and above. Then

1 .T T

_' = ibrM(p)/_+ ½ibrMib+qr/_" q + _(x z Pzxz+X z PzJcz) (49)

After substituting for M(p)f_ using Eq. (2) and for xz using Eq. (43),

Eq. (49) becomes

f/ = pTBT. -- OrbO + pr(½M - C)p-- p_ rp + qr kq

l T r urBr z pzxz_l_xrzPz(Azxz+Bzu¢)]+-_[(xz A z + ) (50)

NOW using I,emma A1, the matrix (I/2)M -- C is skew symmetric,

and we get

, r _ t'_Az)xzf" = pr Bru -- tlr D4 + _Xz (Az Pz +

1 T T 1 T+ _uc (8_ e_)x_ + _, (Pz_)uc (51)

(/ = -?Ir Dtl + ibr Br u - l xr Qzx z + xr Cr uc (52)

Using Eqs. (46) and (47) and noting (Fig. 3a) that u = -Yz -----Czxz

and Bib = Yr = U_,

(/ _qr _)?l i r r + yr uc_x_ Qzx_ (53)= - - uc Yz

IXT_9 = --47"34 -- "_ z _2zxz (54)

Since b is positive definite, it follows that 12 < 0; i.e., _'is negative
semidefinite, and the system is Lyapunov stable. Now, V = 0 only

if 4 = 0 and L,x_ = 0. Therefore, either y_ = 0 or y_ consists only
of terms such as vtte zot, where v is a constant vector and Zo is a

transmission zero of (A,, B_, L,). Since (A¢, B,, L,) has no trans-

mission zeros in Re(s) > O, this requires that y, _ 0 exponentially.

Since (Ac, B,., L,) is minimal and stable, x_ ---* 0 exponentially. But
y_ _ 0 =_ 0 ---* 0 and co ---* 0 =_ ib _ 0; then this implies that
,fi -_ 0. Substituting in Eq. (2), we get y --_ y_,, 0 --_ 0,,, q _ 0,
and u --* 0, where y_ and 0_, are some steady-state values of 7 and

0, respectively.
Now consider the configuration shown in Fig. 3b, which is re-

alized by applying the following similarity transformation to the

system in Eq. (43):

01T= A_ Bc (55)

C_ D,

Clearly, T is nonsingular if and only if/C(s) has no transmission

zeros at the origin. The transformed system has controller state

equations

Jcc = AcXc + Bcyp (56)

u = -Yz = -(C,x,. + D_yp) (57)

where yp = (yr, or)r. Since transformation T is linear and non-

singular, the transformed system is Lyapunov stable. Now it will be

shown that the system is, in fact, asymptotically stable.

Referring to Fig. 3b, we have shown that the output yp tends to

some steady-state value _p = (y.S, or) 7-. Since/C(s) has no zeros

at the origin and is stable, its output yz(= -u) will also tend to

some steady-state _,. Consequently, if 5'p # 0, the control input u
will tend to a constant value fi # 0. However, this contradicts the

previously proven fact that u ---*0. Therefore, yp ---* 0 and x: --+ 0
[because E(s) is stable]. This proves (using LaSalle's invariance

theorem) that the system is asymptotically stable. Since V is radially

unbounded, the system is GAS. [:3
Since no assumptions were made regarding the model order as

well as the knowledge of the parametric values, the stability is robust
to modeling errors and parametric uncertainties. The robustness is

a direct consequence of the passivity of the system, which results
from actuator/sensor collocation.

Remark 1. In Theorem 4, if Eq. (46) holds with a negative-
definite matrix Q_ replacing rL, L,, then the closed-loop system is
GAS. In this case the observability and minimum phase conditions
in 2 are not needed.

Remark 2. The controller/C(s) stabilizes the complete plant;

i.e., the system consisting of the rigid modes, the elastic modes, and

the compensator state vector (x:) is GAS. The global asymptotic
stability is guaranteed regardless of the number of modes in the

model or parameter uncertainties. The order of the controller can
be chosen to be any number >k. In other words, this result enables

the design of a controller of essentially any desired order, which ro-

bustly stabilizes the plant. A procedure for designing/C is to choose

Q_ = diag(Q_, Ok), where Qc = Q r > 0, and to choose a stable Ac

and matrices B_ and C, so that Eqs. (46) and (47) have a positive-
definite solution Pz. In addition, D_ must be such that/C(s) has no

transmission zeros at the origin, i.e., det[Dc - C,A_ 1B,] :/: O. Be-

cause of the large number of free parameters (Ao B_, Co D¢, L,.), it

is generally not straightforward to use Theorem 4 to obtain the com-
pensator. Another method is to use an s-domain sufficient condition,

given below.
Theorem 5. The closed-loop system given by Eqs. (21), (56),

and (57) is GAS if ]C(s) has no transmission zeros at s = 0 and

IC(s)/s is MSPR.

Proof The proof can be obtained by a slight modification of the
results of Ref. 13 to show that the above implies the conditions of
Theorem 4.

The condition that lC(s)/s be MSPR is sometimes much easier to
check than the conditions of Theorem 1. For example, let K:(s) =

diag[/Ci (s) ..... /Ck (s)], where

• s _ +/his + fl_ (58)
K_ i (s) =/c i s2 "_all------ _ -{- o/o/

It is straightforward to show that K:(s)/s is MSPR if and only if (for

i = 1..... k), k_, a_, Ul_, fl_, #ti are positive and

ali -- flJi > 0, alifloi - u(_/_u > 0 (59)

For higher order K;i, the conditions on the polynomial coefficients

are harder to obtain. One systematic procedure for obtaining such

conditions for higher order controllers is the application of Sturm's
theorem. _4Symbolic manipulation codes can then be used to derive

explicit inequalities. The controller design problem can be subse-

quently posed as a constrained optimization problem that minimizes
a given performance function. For the case of fully populated K:(s),

however, there appear to be no straightforward methods and it re-
mains an area of future research.

The following results, which address the cases with static dissi-
pative controllers when the actuators have first- and second-order

dynamics, are an immediate consequence of Theorem 5 and are

stated without proof.
Corollary 1. For the static dissipative controller [Eq. (22)],

suppose Gp and G, are diagonal with positive entries (denoted
by subscript i), and actuators represented by the transfer function

GAi(S) = ki/($ + ai) are present in the ith control channel. Then

the closed-loop system is GAS if G,i > Gm/ai (for i = 1..... k).
Corollary 2. Suppose the static dissipative controller also in-

cludes the feedback of the acceleration yo, that is,

u = -Gpyp - Gryr -- G,_y_,



1050 KELKAR,JOSHI,ANDALBERTS

where Gp, G,, and G, are diagonal with positive entries. Sup-
pose the actuator dynamics for the ith input channel are given by
GAi(S) = ki/(s 2 + tzis + vi), with ki, I.ti, vi positive. Then the

closed-loop system is asymptotically stable if

Gri G,i
--_<<gi< _-_-'" i=1 ..... k
Gai

Realization of lC as a Strictly Proper Controller

The controller/C(s) [Eqs. (56) and (57)] is not strictly proper be-
cause of the direct transmission term De. From a practical viewpoint,
it is sometimes desirable to have a strictly proper controller because
it attenuates sensor noise as well as high-frequency disturbances.

Furthermore, the most common types of controllers, which include
the linear quadratic Gaussian (LQG) as well as the observer/pole
placement controllers, are strictly proper (they have a first-order
rolloff). In addition, the realization in Eqs. (56) and (57) does not
utilize the rate measurement y,. The following result states that K

can be realized as a strictly proper controller wherein both Yv and
Yr are utilized.

Theorem 6. The nonlinear plant with yp and Yr as outputs is
stabilized by the controller K7 given by

_,. = AcJc + [Be - A_L

Yc = CcY,c

L][ yp ] (60)

LY_ J

(61)

where C¢ is assumed to be of full rank and an n_ x k(nc > k) matrix
L is a solution of

Dc - CoL = 0 (62)

Proof. Consider the controller realization (56) and (57). Let

ic = xc + Ly t, (63)

where L is an nc x k matrix. Differentiating Eq. (63), using Eqs. (56)

and (57), and replacing yj, by y,, we get Eq. (60), and

y, = C_ic + (D_ - CcL)y t, (64)

If L is chosen to satisfy Eq. (62), we get the strictly proper controller

given by Eqs. (60) and (61). Equation (62) represents k 2 equations in

knc unknowns. Ifk < nc (i.e., the compensator order is greater than

the number of plant inputs), and Cc is of full rank, there are many
possible solutions for L. The solution that minimizes the Frobenius
norm of L is

L = cr(c_cr)-IDc (65)

Ifk = n_, Eq. (65) gives the unique solution L = C_-ID_.

V. Numerical Example: Two-Link
Flexible Space Robot

A numerical example is given to demonstrate the result of Sec. III.
The example system consists of a conceptual nonlinear model of a
spacecraft (Fig. 4) consisting of a central body with two flexible
articulated appendages. The stability result obtained for the nonlin-

ear dissipative control law given in Sec. III is verified by simulation
of this system, which resembles a flexible space manipulator. The

central body is a solid cylinder with 1.0 m diameter and 2 m height,

End-elf ccitt

Fig. 4 Flexible space robot.
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and each link is a 3-m-long flexible beam. The cross section of the

links is circular with 1.0 cm diameter resulting in significant flexi-

bility. The material chosen for the central body as well as the links
has a mass density of 2.568 x 10 -3 kg/m s and modulus of elasticity

E = 6.34 × 109 kg/m 2. The mass oftbe central body is 4030 kg and

that of each link is 0.605 kg. The principal moments of inertia of the

central body about local x, y, and z axes are ! 600, 1600, and 500 kg-
m2, respectively. Each link can rotate about its local z axis. The mo-
ment of inertia of each link about its axis of rotation is 1.815 kg-m 2.

The central body has three rotational degrees of freedom. As shown

in Fig. 4, there are two revolute joints, one between the central body
and link 1 and another between link 1 and link 2. The axes of rota-

tion for revolutejoints 1 and 2 coincide with the local z axes of links
1 and 2, respectively. A three-axis torque actuator is assumed for

the central body and one torque actuator is assumed for each of the

revolute joints. Inertial attitude and rate sensors are collocated with

the central-body torque actuators. Joint angle and rate sensors are
collocated with the torque actuators at the revolute joints. The first

and second link are modeled as flexible beams with pinned-pinned

and pinned-free boundary conditions, respectively. The first four

bending modes in the local xy plane were considered for each link,
i.e., the system has five rigid rotational degrees of freedom and eight

flexible degrees of freedom. The modal data were obtained using

M$C/NASTRAN. 15 A complete nonlinear simulation was obtained
using a commercially available software, DADS) 6

A rest-to-rest maneuver was considered in order to demonstrate

the control law. The initial configuration was equivalent to zr/4 rad

rotation of the entire spacecraft about the global x axis and 0.5

rad rotation of the revolute joint 2 about its local z axis. The
objective of the control law was to restore the zero state of the
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system (i.e., zero attitude of the central body and fully stretched

configuration of the links). The nonlinear dissipative control law

of Eq. (13) was used to accomplish the task. Since there are no

known techniques for the synthesis of such controllers, the selec-

tion of controller gains was based on trial and error. Based on sev-

eral trials, the following gains were found to give the desirable

response: Gpt = diag(1000, 1000, 1000), Gp2 = diag(50, 50),and

Gr = diag(500, 275, 270, 100, 100). As the system sets in motion,

all members move relative to one another and there is dynamic

interaction between the members. Complete nonlinear effects and

coupling effects are incorporated in the simulation. The Euler pa-

rameter responses are shown in Fig. 5. The term at reaches steady

state in about 30 s, and az, a3 remain very small (less than 10 -3)

during the maneuver. The joint angle displacements for revolute

joints 1 and 2 are shown in Fig. 6. The joint displacements decay

asymptotically and are nearly zero within 15 s. The end-effeetor

displacements with respect to global x, y, and z axes are shown in

Figs. 7 and 8. It can be seen that the x position of the end effector

reaches its desired value in about 15 s, whereas the y and z positions

take about 35 s to settle. These responses effectively demonstrate

the stability result of Sec. HI. The time histories of control torques

are given in Figs. 9-11. The effects of nonlinearities in the model

can be seen in the responses as well as in the torque profiles.

VL Concluding Remarks

Stability of a class of nonlinear multibody flexible space systems

was considered using a class of dissipative control laws. Assuming

collocated actuators and sensors, global asymptotic stability was

proved using a nonlinear feedback of the central-body quatemion

angles, relative body angles, and angular velocities. A numerical

example was also given to demonstrate the stability result. In ad-

dition, for the special case wherein the central-body motion is in

the linear range whereas the appendages can undergo unlimited

(nonlinear) motion, global asymptotic stability was proved with a

linear static dissipative control law. Furthermore, the stability was

shown to hold despite the presence of a broad class of actuator

and sensor nonlinearities and actuator dynamics. A class of linear

dynamic dissipative controllers was also introduced and was shown
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to provide global asymptotic stability. Dynan-dc dissipative contro-

llers offer more design freedom than the static dissipative controller

and therefore can potentially achieve better performance and noise

attenuation. All the stability results presented depend only on inher-

ent passivity characteristics of the system and are valid in spite of

unmodeled modes and parametric uncertainties, i.e., the stability is

robust to model errors. The results have significant practical value

since mathematical models of multibody flexible systems usually

have substantial inaccuracies and the actuation and sensing devices

have nonlinearities.

Design of dissipative controllers to obtain optimal performance is

as yet an unsolved problem. Future work should address the devel-

opment of systematic methods for the synthesis of both nonlinear

and linear as well as static and dynamic dissipative controllers for

such systems.

Appendix: System Properties

Lemma AI. For the system represented by Eq. (2), the matrix

(1/2)M - C is skew symmetric.

Outline of proof. Using the indicial notation, the (k, j)th ele-

ment of C(p, I)) is defined as

c. = = + p, (A1)
i=1 i=l

Similarly, the kith component of the time derivative of the inertia

matrix M(p) is given by the chain rule as

• _ OMkj .

Mkj = _ "_'pi Pi (A2)
i=1

Now if we define the matrix S = (1/2)M - c, then the (k, j)th

element of S is given by

1

S,_ = _ M_j - C_j

=2=1_ raM jL- -p - "]- OMkiopj OMij)]Opk [7i

1_l(OMi) OMki)I7 i (A3)=-2 = Opk ap_

Since the inertia matrix is symmetric, i.e., M# = Mji, by inter-

changing the indices k and j, it follows from the above equation

that

Sjk = -Stq (A4)

which implies that the matrix S is skew symmetric, t3

Lemma AI can be used to prove that the system given by Eq. (2)

has the important inherent property of passivity, as defined in Ref. 3.

Lemma A2. The input--output map from u to y, is passive; i.e.

(with zero initial conditions),

ryr (t)u(t) >0 >0 (A5)
VT

for all u(t) belonging to the extended Lebesgue space L_,.

Proof Premultiplying both sides of Eq. (2) by/_r and integrat-

ing, we get

f0 i[.OrM(p)[_+prc(p,p)p+[_rD[_+prKp] = yr.dt

(A6)

Noting that

d r

_tt[ p M(p)p] = 2/_rM(p)/_ + prM(p)p (A7)

and using Lemma Al, we get

lpr(T)M(p(T))l)(T)+ forprDpdt + _pr(T)Kp(T)

= fr Y ru
dt (AS)

which gives the required result.
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